# Optical Sensing of Ecosystem Carbon Fluxes



#### **Authors**

Spectral Bio-Indicators team: Elizabeth Middleton, David Landis, Petya Campbell, Yen-Ben Cheng, Qingyuan Zhang, Larry Corp, Bruce Cook, Milton Hom

Collaborators: Thomas Hilker, Nicholas Coops, Bill Kustas, Andy Russ, John Pruger, Forrest Hall, John Gamon, Hank Margolis, Joanna Joiner, Andy Black, Alan Barr

#### **Optical Signals**

# Corresponding to physiological responses there are specific effects on spectral reflectance

- Leaf chlorophyll concentration (multiple visible wavelengths) light absorbed by chlorophyll drives photosynthesis
- 2. Non-photosynthetic quenching changes in Xanthophyll cycle pigment concentrations (531 nm)
- 3. Solar Induced Fluorescence (peaks at 690 and 735 nm)



## Light Use Efficiency Model

#### Where:

GEP is the gross ecosystem production

PARin is the incident Photosynthetically Active Radiation (PAR)

 $f_{APAR}$  is the fraction of PAR absorbed by vegetation

- e is the light use efficiency, the conversion factor between energy and absorbed carbon
  - In existing models is assigned a maximum value based on cover type and downregulated based on responses to meteorological variables such as temperature and humidity

## **Tower-based Spectrometers**

#### **AMSPEC**



#### **FUSION**



## SK-Old Aspen Seasonality: NDVI, EVI, GEP





#### Daily GEP from Optical Signals

## Using total fpar measured at the tower using PAR sensors



## Using narrow-band NDVI to estimate green *f*PAR



#### Chlorophyll Index and Daily GEP



- Spectral index describes canopy chlorophyll content

#### Daily GEP from Optical Signals



- This spectral index is the ratio of the first derivatives of the spectral reflectance at 706 and 730 nm
- Derivative index is related to solar induced chlorophyll fluorescence and used to describe variations in light use efficiency

#### Hourly GEP from Optical Signals



- PRI is related to xanthophyll cycle pigments and chlorophyll/carotenoid pigment pools
- Used to describe variations in light use efficiency

#### Scaling Fluxes with Aircraft Imagery



Imagery of USDA ARS cornfield in Beltsville, MD from Airborne Imaging Spectrometer for Applications (AISA) data collected on September 14, 2009. Left panel shows  $f_{APAR}$  from NDVI; middle panel is PRI; and right panel is modeled GEP in mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> using the model derived from ground reflectance data.

#### Conclusions

- To even approach our goal of observing fluxes "everywhere and all the time" we need take advantage of optical sensing
- Optical approaches provide direct observations of vegetation stress responses
  - Directly measures physiological responses of plants
  - Can describe spatial distributions of fluxes
  - Is scalable from plot to satellite (local to global)
  - Flux estimation independent of meteorological data (used as inputs in most carbon models)
- We need to compare results from different sites to develop and test robust algorithms